Ku and DNA-dependent Protein Kinase Dynamic Conformations and Assembly Regulate DNA Binding and the Initial Non-homologous End Joining Complex*

نویسندگان

  • Michal Hammel
  • Yaping Yu
  • Brandi L. Mahaney
  • Brandon Cai
  • Ruiqiong Ye
  • Barry M. Phipps
  • Robert P. Rambo
  • Greg L. Hura
  • Martin Pelikan
  • Sairei So
  • Ramin M. Abolfath
  • David J. Chen
  • Susan P. Lees-Miller
  • John A. Tainer
چکیده

DNA double strand break (DSB) repair by non-homologous end joining (NHEJ) is initiated by DSB detection by Ku70/80 (Ku) and DNA-dependent protein kinase catalytic subunit (DNA-PKcs) recruitment, which promotes pathway progression through poorly defined mechanisms. Here, Ku and DNA-PKcs solution structures alone and in complex with DNA, defined by x-ray scattering, reveal major structural reorganizations that choreograph NHEJ initiation. The Ku80 C-terminal region forms a flexible arm that extends from the DNA-binding core to recruit and retain DNA-PKcs at DSBs. Furthermore, Ku- and DNA-promoted assembly of a DNA-PKcs dimer facilitates trans-autophosphorylation at the DSB. The resulting site-specific autophosphorylation induces a large conformational change that opens DNA-PKcs and promotes its release from DNA ends. These results show how protein and DNA interactions initiate large Ku and DNA-PKcs rearrangements to control DNA-PK biological functions as a macromolecular machine orchestrating assembly and disassembly of the initial NHEJ complex on DNA.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Intrinsically Disordered APLF Links Ku, DNA-PKcs, and XRCC4-DNA Ligase IV in an Extended Flexible Non-homologous End Joining Complex*

DNA double-strand break (DSB) repair by non-homologous end joining (NHEJ) in human cells is initiated by Ku heterodimer binding to a DSB, followed by recruitment of core NHEJ factors including DNA-dependent protein kinase catalytic subunit (DNA-PKcs), XRCC4-like factor (XLF), and XRCC4 (X4)-DNA ligase IV (L4). Ku also interacts with accessory factors such as aprataxin and polynucleotide kinase/...

متن کامل

TRF2/RAP1 and DNA-PK mediate a double protection against joining at telomeric ends.

DNA-dependent protein kinase (DNA-PK) is a double-strand breaks repair complex, the subunits of which (KU and DNA-PKcs) are paradoxically present at mammalian telomeres. Telomere fusion has been reported in cells lacking these proteins, raising two questions: how is DNA-PK prevented from initiating classical ligase IV (LIG4)-dependent non-homologous end-joining (C-NHEJ) at telomeres and how is ...

متن کامل

DNA PK JBC 110713 final

The resection of DNA double strand breaks (DSBs) initiates homologous recombination (HR) and is critical for genomic stability. Using direct measurement of resection in human cells and reconstituted assays of resection with purified proteins in vitro, we show that DNA-dependent protein kinase catalytic subunit (DNA-PKcs), a classic non-homologous end joining (NHEJ) factor, antagonizes DSB resec...

متن کامل

The Role of Long Non Coding RNAs in the Repair of DNA Double Strand Breaks

DNA double strand breaks (DSBs) are abrasions caused in both strands of the DNA duplex following exposure to both exogenous and endogenous conditions. Such abrasions have deleterious effect in cells leading to genome rearrangements and cell death. A number of repair systems including homologous recombination (HR) and non-homologous end-joining (NHEJ) have been evolved to minimize the fatal effe...

متن کامل

Visualization of DNA-induced conformational changes in the DNA repair kinase DNA-PKcs.

The catalytic subunit of the DNA-dependent protein kinase (DNA-PKcs) is essential for the repair of double-stranded DNA breaks (DSBs) in non- homologous end joining (NHEJ) and during V(D)J recombination. DNA-PKcs binds single- and double-stranded DNA in vitro, and in vivo the Ku heterodimer probably helps recruit it to DSBs with high affinity. Once loaded onto DNA, DNA-PKcs acts as a scaffold f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 285  شماره 

صفحات  -

تاریخ انتشار 2010